分治法

分治法 Divide and conquer

分治算法采取各个击破的方法,将一个规模为 N 的问题分解为 K 个规模较小的子问题,这些子问题相互独立且与原问题性质相同。只要求出子问题的解,就可得到原问题的解。在编程过程中,经常遇到处理数据相当多、求解过程比较复杂、直接求解发挥比较耗时的问题。在求解这类问题时,可以采用各个击破的方法。具体做法是:先把这个问题分解成几个较小的子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个大问题的解。如果这些子问题还是比较大,还可以继续再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。这就是分治算法的基本思想。

使用分治算法解题的一般步骤如下。

  • 分解,将要解决的问题划分成若干个规模较小的同类问题。
  • 求解,当子问题划分得足够小时,用较简单的方法解决。
  • 合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

归并排序

分治算法的典型即是合并排序:

public class Merge {
    // 不要在 merge 函数里构造新数组了,因为 merge 函数会被多次调用,影响性能
    // 直接一次性构造一个足够大的数组,简洁,高效
    private static Comparable[] aux;

     public static void sort(Comparable[] a) {
        aux = new Comparable[a.length];
        sort(a, 0, a.length - 1);
    }

    private static void sort(Comparable[] a, int lo, int hi) {
        if (lo >= hi) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, lo, mid);
        sort(a, mid + 1, hi);
        merge(a, lo, mid, hi);
    }

    private static void merge(Comparable[] a, int lo, int mid, int hi) {
        int i = lo, j = mid + 1;
        for (int k = lo; k <= hi; k++)
            aux[k] = a[k];
        for (int k = lo; k <= hi; k++) {
            if      (i > mid)              { a[k] = aux[j++]; }
            else if (j > hi)               { a[k] = aux[i++]; }
            else if (less(aux[j], aux[i])) { a[k] = aux[j++]; }
            else                           { a[k] = aux[i++]; }
        }
    }

    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }
}
上一页
下一页