避免提早优化
避免提早优化

复杂性是万恶之源,总结而言,我们在注重整体架构与性能的同时,要避免过早地优化、避免过度优化。
如何考虑性能
要解决的第一个问题是“您在正常的开发过程中应该为性能多少担心
最好的方法是介于这两种极端之间,在这种极端情况下,您可以使用性能的基本知识来选择“自然高效”但又干净又简单的设计替代方案。关键是要了解哪些操作根本是昂贵的。以下是一些今天相对昂贵的操作示例:
- 网络通信:即使在数据中心内,往返消息交换也可能花费
10 –50 µs,这是数以万计的指令时间。广域往返可能需要10 到100 毫秒。 I/O 到辅助存储:磁盘I/O 操作通常需要5 到10 毫秒,这是数百万条指令时间。闪存存储需要10 –100 µs。新出现的非易失性存储器的速度可能高达1 µs ,但这仍约为2000 条指令时间。- 动态内存分配(
C 语言中的malloc ,C ++ 或Java 中的新增功能)通常涉及分配,释放和垃圾回收的大量开销。 - 高速缓存未命中:将数据从
DRAM 提取到片上处理器高速缓存中需要数百条指令时间;在许多程序中,整体性能取决于缓存未命中和计算成本。
了解哪些东西最昂贵的最好方法是运行微基准测试(小型程序,这些程序单独测量单个操作的成本
一旦对什么是昂贵和什么便宜有了一般的认识,就可以使用该信息尽可能地选择便宜的业务。在许多情况下,更有效的方法将与较慢的方法一样简单。例如,当存储将使用键值查找的大量对象时,可以使用哈希表或有序映射。两者都通常在库包中提供,并且都简单易用。但是,哈希表可以轻松地快
作为另一个示例,请考虑使用诸如
在
通常,较简单的代码往往比复杂的代码运行更快。如果您定义了特殊情况和例外,则无需代码即可检查这些情况,并且系统运行速度更快。深层类比浅层类更有效,因为它们为每个方法调用完成了更多工作。浅类会导致更多的层交叉,并且每个层交叉都会增加开销。
修改前的度量
但是,即使您如上所述进行设计,也请假设您的系统仍然太慢。根据您对慢速运动的直觉,急于着手开始进行性能调整。不要这样!程序员对性能的直觉是不可靠的。即使对于有经验的开发人员也是如此。如果您开始根据直觉进行更改,则会浪费时间在实际上无法提高性能的事情上,并且可能会使系统变得更加复杂。
进行任何更改之前,请测量系统的现有行为。这有两个目的。首先,这些测量将确定性能调整将产生最大影响的地方。仅仅测量顶级系统性能是不够的。这可能会告诉您系统速度太慢,但不会告诉您原因。您需要进行更深入的衡量,以详细确定影响整体绩效的因素;目标是确定系统当前花费大量时间的少量非常具体的地方,以及您有改进想法的地方。测量的第二个目的是提供基线,以便您可以在进行更改后重新测量性能,以确保性能得到实际改善。如果这些更改并未在效果上带来可衡量的变化,然后将其退出(除非它们使系统更简单
围绕关键路径进行设计
在这一点上,我们假设您已经仔细分析了性能,并确定了一段缓慢的代码来影响整个系统的性能。改善其性能的最佳方法是进行“根本”更改,例如引入缓存,或使用其他算法方法(例如,平衡树与列表
不幸的是,有时会出现一些根本无法解决的情况。这将我们带到本章的核心问题,即如何重新设计现有代码,使其运行更快。这应该是您的不得已的方法,并且不应该经常发生,但是在某些情况下它可能会带来很大的不同。关键思想是围绕关键路径设计代码。
首先,问自己在通常情况下执行所需任务必须执行的最少代码量是多少。忽略任何现有的代码结构。相反,想象一下您正在编写一个仅实现关键路径的新方法,这是在最常见的情况下必须执行的最少代码量。当前的代码可能充满特殊情况。在此练习中,请忽略它们。当前的代码可能会在关键路径上通过多个方法调用。想象一下,您可以将所有相关代码放在一个方法中。当前代码还可以使用各种变量和数据结构。仅考虑关键路径所需的数据,并假定最适合关键路径的任何数据结构。例如,将多个变量合并为一个值可能很有意义。假设您可以完全重新设计系统,以最大程度地减少必须为关键路径执行的代码。我们将此代码称为“理想”。
理想的代码可能会与您现有的类结构冲突,并且可能不切实际,但它提供了一个很好的目标:这代表了代码可能是最简单,最快的。下一步是寻找一种新设计,使其尽可能接近理想状态,同时又要保持干净的结构。您可以应用本书前面各章中的所有设计思想,但要保持(最好)保持理想代码的附加约束。您可能需要在理想情况下添加一些额外的代码,以允许使用简洁的抽象。例如,如果代码涉及哈希表查找,则可以向通用哈希表类引入额外的方法调用。以我的经验,几乎总是可以找到干净简洁的设计,但非常接近理想。
在此过程中发生的最重要的事情之一是从关键路径中除去特殊情况。当代码运行缓慢时,通常是因为它必须处理各种情况,并且代码经过结构化以简化所有不同情况的处理。每个特殊情况都以额外的条件语句和