关系模型
关系模型
SQL 是最著名的关系数据模型,它基于 Edgar Codd 在 1970 年提出的关系模型:数据被组织成关系(SQL 中称作表),其中每个关系是元组(SQL 中称作行)的无序集合。关系数据库起源于商业数据处理,在 20 世纪 60 年代和 70 年代用大型计算机来执行。从今天的角度来看,那些用例显得很平常:典型的事务处理(将销售或银行交易,航空公司预订,库存管理信息记录在库)和批处理(客户发票,工资单,报告)。
当时的其他数据库迫使应用程序开发人员必须考虑数据库内部的数据表示形式,关系模型致力于将上述实现细节隐藏在更简洁的接口之后。多年来,在数据存储和查询方面存在着许多相互竞争的方法。在 20 世纪 70 年代和 80 年代初,网络模型和分层模型曾是主要的选择,但关系模型随后占据了主导地位。对象数据库在 20 世纪 80 年代末和 90 年代初来了又去。XML 数据库在二十一世纪初出现,但只有小众采用过。关系模型的每个竞争者都在其时代产生了大量的炒作,但从来没有持续。
随着电脑越来越强大和互联,它们开始用于日益多样化的目的。关系数据库非常成功地被推广到业务数据处理的原始范围之外更为广泛的用例上。你今天在网上看到的大部分内容依旧是由关系数据库来提供支持,无论是在线发布,讨论,社交网络,电子商务,游戏,软件即服务生产力应用程序等等内容。
一对多关系
目前大多数应用程序开发都使用面向对象的编程语言来开发,这导致了对 SQL 数据模型的普遍批评:如果数据存储在关系表中,那么需要一个笨拙的转换层,处于应用程序代码中的对象和表,行,列的数据库模型之间。模型之间的不连贯有时被称为阻抗不匹配(impedance mismatch)。
像 ActiveRecord 和 Hibernate 这样的 对象关系映射(ORM object-relational mapping)框架可以减少这个转换层所需的样板代码的数量,但是它们不能完全隐藏这两个模型之间的差异。
整个简介可以通过一个唯一的标识符 user_id 来标识。像 first_name 和 last_name 这样的字段每个用户只出现一次,所以可以在 User 表上将其建模为列。但是,大多数人在职业生涯中拥有多于一份的工作,人们可能有不同样的教育阶段和任意数量的联系信息。从用户到这些项目之间存在一对多的关系,可以用多种方式来表示:
- 传统 SQL 模型(SQL:1999 之前)中,最常见的规范化表示形式是将职位,教育和联系信息放在单独的表中,对 User 表提供外键引用。
- 后续的 SQL 标准增加了对结构化数据类型和 XML 数据的支持;这允许将多值数据存储在单行内,并支持在这些文档内查询和索引。这些功能在 Oracle,IBM DB2,MS SQL Server 和 PostgreSQL 中都有不同程度的支持。JSON 数据类型也得到多个数据库的支持,包括 IBM DB2,MySQL 和 PostgreSQL。
- 第三种选择是将职业,教育和联系信息编码为 JSON 或 XML 文档,将其存储在数据库的文本列中,并让应用程序解析其结构和内容。这种配置下,通常不能使用数据库来查询该编码列中的值。
对于一个像简历这样自包含文档的数据结构而言,JSON 表示是非常合适的,JSON 比 XML 更简单。面向文档的数据库(如 MongoDB,RethinkDB,CouchDB 和 Espresso)支持这种数据模型。如下例中用 JSON 文档表示一个 LinkedIn 简介:
{
"user_id": 251,
"first_name": "Bill",
"last_name": "Gates",
"summary": "Co-chair of the Bill & Melinda Gates... Active blogger.",
"region_id": "us:91",
"industry_id": 131,
"photo_url": "/p/7/000/253/05b/308dd6e.jpg",
"positions": [
{
"job_title": "Co-chair",
"organization": "Bill & Melinda Gates Foundation"
},
{
"job_title": "Co-founder, Chairman",
"organization": "Microsoft"
}
],
"education": [
{
"school_name": "Harvard University",
"start": 1973,
"end": 1975
},
{
"school_name": "Lakeside School, Seattle",
"start": null,
"end": null
}
],
"contact_info": {
"blog": "http://thegatesnotes.com",
"twitter": "http://twitter.com/BillGates"
}
}
JSON 表示比多表模式具有更好的局部性(locality)。如果在前面的关系型示例中获取简介,那需要执行多个查询(通过 user_id 查询每个表),或者在 User 表与其下属表之间混乱地执行多路连接。而在 JSON 表示中,所有相关信息都在同一个地方,一个查询就足够了。从用户简介文件到用户职位,教育历史和联系信息,这种一对多关系隐含了数据中的一个树状结构,而 JSON 表示使得这个树状结构变得明确:
多对一和多对多的关系
值得注意的一点,region_id 和 industry_id 是以 ID,而不是纯字符串“Greater Seattle Area”和“Philanthropy”的形式给出的。如果用户界面用一个自由文本字段来输入区域和行业,那么将他们存储为纯文本字符串是合理的。另一方式是给出地理区域和行业的标准化的列表,并让用户从下拉列表或自动填充器中进行选择,其优势如下:
- 各个简介之间样式和拼写统一
- 避免歧义(例如,如果有几个同名的城市)
- 易于更新——名称只存储在一个地方,如果需要更改(例如,由于政治事件而改变城市名称),很容易进行全面更新。
- 本地化支持——当网站翻译成其他语言时,标准化的列表可以被本地化,使得地区和行业可以使用用户的语言来显示
- 更好的搜索——例如,搜索华盛顿州的慈善家就会匹配这份简介,因为地区列表可以编码记录西雅图在华盛顿这一事实(从“Greater Seattle Area”这个字符串中看不出来)
存储 ID 还是文本字符串,这是个 副本(duplication)问题。当使用 ID 时,对人类有意义的信息(比如单词:Philanthropy)只存储在一处,所有引用它的地方使用 ID(ID 只在数据库中有意义)。当直接存储文本时,对人类有意义的信息会复制在每处使用记录中。
使用 ID 的好处是,ID 对人类没有任何意义,因而永远不需要改变:ID 可以保持不变,即使它标识的信息发生变化。任何对人类有意义的东西都可能需要在将来某个时候改变——如果这些信息被复制,所有的冗余副本都需要更新。这会导致写入开销,也存在不一致的风险(一些副本被更新了,还有些副本没有被更新)。去除此类重复是数据库 规范化(normalization)的关键思想。
不幸的是,对这些数据进行规范化需要多对一的关系(许多人生活在一个特定的地区,许多人在一个特定的行业工作),这与文档模型不太吻合。在关系数据库中,通过 ID 来引用其他表中的行是正常的,因为连接很容易。在文档数据库中,一对多树结构没有必要用连接,对连接的支持通常很弱。如果数据库本身不支持连接,则必须在应用程序代码中通过对数据库进行多个查询来模拟连接。(在这种情况中,地区和行业的列表可能很小,改动很少,应用程序可以简单地将其保存在内存中。不过,执行连接的工作从数据库被转移到应用程序代码上。