计算处理模式
数据处理架构
OLTP 与 OLAP
数十年来,数据和数据处理在企业中无处不在。多年来,数据的收集和使用一直在增长,公司已经设计并构建了基础架构来管理数据。大多数企业实施的传统架构区分了两种类型的数据处理:事务处理(OLTP, Online Transactional Processing)和分析处理(OLAP, Online Analytical Processing)。在互联网浪潮出现之前,企业的数据量普遍不大,特别是核心的业务数据,通常一个单机的数据库就可以保存。在业务数据处理的早期,对数据库的写入通常对应于正在进行的商业交易:进行销售,向供应商下订单,支付员工工资等等。随着数据库扩展到那些没有不涉及钱易手的业务,我们仍然使用术语交易(transaction)来代指形成一个逻辑单元的一组读写。事务不一定具有 ACID(原子性,一致性,隔离性和持久性)属性。事务处理只是意味着允许客户端进行低延迟读取和写入,而不是只能定期运行(例如每天一次)的批量处理作业。
同时,数据库也开始越来越多地用于数据分析,这些数据分析具有非常不同的访问模式。通常,分析查询需要扫描大量记录,每个记录只读取几列,并计算汇总统计信息(如计数,总和或平均值),而不是将原始数据返回给用户。早期所有的线上请求(OLTP) 和后台分析 (OLAP) 都跑在同一个数据库实例上。后来随着数据量不断增大,在二十世纪八十年代末和九十年代初期,公司倾向于在单独的数据库上运行分析,这个单独的数据库被称为数据仓库(data warehouse)。在这样的背景下,以 Hadoop 为代表的大数据技术开始蓬勃发展,它用许多相对廉价的 x86 机器构建了一个数据分析平台,用并行的能力破解大数据集的计算问题。由此,架构师把存储划分成线上业务和数据分析两个模块。如下图所示,业务库的数据通过 ETL 工具抽取出来,导入专用的分析平台。业务数据库专注提供 TP 能力,分析平台提供 AP 能力,各施其职,看起来已经很完美了。但其实这个架构也有自己的不足。
属性 | 事务处理 OLTP | 分析系统 OLAP |
---|---|---|
主要读取模式 | 查询少量记录,按键读取 | 在大批量记录上聚合 |
主要写入模式 | 随机访问,写入要求低延时 | 批量导入(ETL),事件流 |
主要用户 | 终端用户,通过 Web 应用 | 内部数据分析师,决策支持 |
处理的数据 | 数据的最新状态(当前时间点) | 随时间推移的历史事件 |
数据集尺寸 | GB ~ TB | TB ~ PB |