操作符
流操作符
-
Intermediate: map (mapToInt, flatMap 等) 、filter、distinct、sorted、peek、limit、skip、parallel、sequential、unordered -
Terminal: forEach、forEachOrdered、toArray、reduce、collect、min、max、count、anyMatch、allMatch、noneMatch、findFirst、findAny、iterator
-
Short-circuiting: anyMatch、allMatch、noneMatch、findFirst、findAny、limit
Intermediate
Filter
stringCollection
.stream()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);
// "aaa2", "aaa1"
Sorted
stringCollection
.stream()
.sorted()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);
// "aaa1", "aaa2"
一定要记住,
System.out.println(stringCollection);
// ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1
Map
stringCollection
.stream()
.map(String::toUpperCase)
.sorted((a, b) -> b.compareTo(a))
.forEach(System.out::println);
List<String> myList = Stream.of("a", "b")
.map(String::toUpperCase)
.collect(Collectors.toList());
assertEquals(asList("A", "B"), myList);
在
List<List<String>> list = Arrays.asList(
Arrays.asList("a"),
Arrays.asList("b"));
System.out.println(list);
System.out.println(list
.stream()
.flatMap(Collection::stream)
.collect(Collectors.toList()));
// 案例:字符串转化
String[][] array = new String[][]{{"a", "b"}, {"c", "d"}, {"e", "f"}};
List<String> collect = Stream.of(array) // Stream<String[]>
.flatMap(Stream::of) // Stream<String>
.filter(x -> !"a".equals(x)) // filter out the a
.collect(Collectors.toList()); // return a List
collect.forEach(System.out::println);
// 案例:文件按行处理,统计单词数
/**
hello world Java
hello world Python
hello world Node JS
hello world Rust
hello world Flutter
**/
Path path = Paths.get("C:\\test\\test.txt");
// read file into a stream of lines
Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);
// stream of array...hard to process.
// Stream<String[]> words = lines.map(line -> line.split(" +"));
// stream of stream of string....hmm...better flat to one level.
// Stream<Stream<String>> words = lines.map(line -> Stream.of(line.split(" +")));
// result a stream of words, good!
Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
// count the number of words.
long noOfWords = words.count();
System.out.println(noOfWords); // 16
Match
匹配操作有多种不同的类型,都是用来判断某一种规则是否与流对象相互吻合的。所有的匹配操作都是终结操作,只返回一个
boolean anyStartsWithA =
stringCollection
.stream()
.anyMatch((s) -> s.startsWith("a"));
System.out.println(anyStartsWithA); // true
boolean allStartsWithA =
stringCollection
.stream()
.allMatch((s) -> s.startsWith("a"));
System.out.println(allStartsWithA); // false
boolean noneStartsWithZ =
stringCollection
.stream()
.noneMatch((s) -> s.startsWith("z"));
System.out.println(noneStartsWithZ); // true
peek
// 用于打印中间状态
Stream.of("one", "two", "three", "four")
.filter(e -> e.length() > 3)
.peek(e -> System.out.println("Filtered value: " + e))
.map(String::toUpperCase)
.peek(e -> System.out.println("Mapped value: " + e))
.collect(Collectors.toList());
// 用于修改初始状态
Stream<User> userStream = Stream.of(new User("Alice"), new User("Bob"), new User("Chuck"));
userStream.peek(u -> u.setName(u.getName().toLowerCase()))
.forEach(System.out::println);
Terminal
Collect
// Accumulate names into a List
List<String> list = people.stream().map(Person::getName).collect(Collectors.toList());
// Accumulate names into a TreeSet
Set<String> set = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new));
// Convert elements to strings and concatenate them, separated by commas
String joined = things.stream()
.map(Object::toString)
.collect(Collectors.joining(", "));
// Compute sum of salaries of employee
int total = employees.stream()
.collect(Collectors.summingInt(Employee::getSalary)));
// Group employees by department
Map<Department, List<Employee>> byDept
= employees.stream()
.collect(Collectors.groupingBy(Employee::getDepartment));
// Compute sum of salaries by department
Map<Department, Integer> totalByDept
= employees.stream()
.collect(Collectors.groupingBy(Employee::getDepartment,
Collectors.summingInt(Employee::getSalary)));
// Partition students into passing and failing
Map<Boolean, List<Student>> passingFailing =
students.stream()
.collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD));
groupingBy/partitioningBy
- 按照年龄归组
Map<Integer, List<Person>> personGroups = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.groupingBy(Person::getAge));
Iterator it = personGroups.entrySet().iterator();
while (it.hasNext()) {
Map.Entry<Integer, List<Person>> persons = (Map.Entry) it.next();
System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size());
}
上面的
Age 0 = 2
Age 1 = 2
Age 5 = 2
Age 8 = 1
Age 9 = 1
Age 11 = 2
……
- 按照未成年人和成年人归组
Map<Boolean, List<Person>> children = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.partitioningBy(p -> p.getAge() < 18));
System.out.println("Children number: " + children.get(true).size());
System.out.println("Adult number: " + children.get(false).size());
输出结果:
Children number: 23
Adult number: 77
在使用条件“年龄小于
Count
long startsWithB =
stringCollection
.stream()
.filter((s) -> s.startsWith("b"))
.count();
System.out.println(startsWithB); // 3
Reduce
该操作是一个终结操作,它能够通过某一个方法,对元素进行削减操作。该操作的结果会放在一个
Optional<String> reduced =
stringCollection
.stream()
.sorted()
.reduce((s1, s2) -> s1 + "#" + s2);
reduced.ifPresent(System.out::println);
// "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2"