重要的内部类

重要的内部类

Node

Node 是最核心的内部类,它包装了 key-value 键值对,所有插入 ConcurrentHashMap 的数据都包装在这里面。它与 HashMap 中的定义很相似,但是但是有一些差别它对 value 和 next 属性设置了 volatile 同步锁,它不允许调用 setValue 方法直接改变 Node 的 value 域,它增加了 find 方法辅助 map.get()方法。

 static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;//带有同步锁的value
        volatile Node<K,V> next;//带有同步锁的next指针

        Node(int hash, K key, V val, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }

        public final K getKey()       { return key; }
        public final V getValue()     { return val; }
        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
        public final String toString(){ return key + "=" + val; }
        //不允许直接改变value的值
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }

        public final boolean equals(Object o) {
            Object k, v, u; Map.Entry<?,?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k == key || k.equals(key)) &&
                    (v == (u = val) || v.equals(u)));
        }

        /**
         * Virtualized support for map.get(); overridden in subclasses.
         */
        Node<K,V> find(int h, Object k) {
            Node<K,V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash == h &&
                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }

这个 Node 内部类与 HashMap 中定义的 Node 类很相似,但是有一些差别;它对 value 和 next 属性设置了 volatile 同步锁。它不允许调用 setValue 方法直接改变 Node 的 value 域,它增加了 find 方法辅助 map.get() 方法。

TreeNode

树节点类,另外一个核心的数据结构。当链表长度过长的时候,会转换为 TreeNode。但是与 HashMap 不相同的是,它并不是直接转换为红黑树,而是把这些结点包装成 TreeNode 放在 TreeBin 对象中,由 TreeBin 完成对红黑树的包装。而且 TreeNode 在 ConcurrentHashMap 集成自 Node 类,而并非 HashMap 中的集成自 LinkedHashMap.Entry<K,V> 类,也就是说 TreeNode 带有 next 指针,这样做的目的是方便基于 TreeBin 的访问。

TreeBin

这个类并不负责包装用户的 key、value 信息,而是包装的很多 TreeNode 节点。它代替了 TreeNode 的根节点,也就是说在实际的 ConcurrentHashMap“数组”中,存放的是 TreeBin 对象,而不是 TreeNode 对象,这是与 HashMap 的区别。另外这个类还带有了读写锁。

这里仅贴出它的构造方法。可以看到在构造 TreeBin 节点时,仅仅指定了它的 hash 值为 TREEBIN 常量,这也就是个标识为。同时也看到我们熟悉的红黑树构造方法。

/**
 * Creates bin with initial set of nodes headed by b.
 */
TreeBin(TreeNode<K,V> b) {
    super(TREEBIN, null, null, null);
    this.first = b;
    TreeNode<K,V> r = null;
    for (TreeNode<K,V> x = b, next; x != null; x = next) {
        next = (TreeNode<K,V>)x.next;
        x.left = x.right = null;
        if (r == null) {
            x.parent = null;
            x.red = false;
            r = x;
        }
        else {
            K k = x.key;
            int h = x.hash;
            Class<?> kc = null;
            for (TreeNode<K,V> p = r;;) {
                int dir, ph;
                K pk = p.key;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((kc == null &&
                            (kc = comparableClassFor(k)) == null) ||
                            (dir = compareComparables(kc, k, pk)) == 0)
                    dir = tieBreakOrder(k, pk);
                    TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    x.parent = xp;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    r = balanceInsertion(r, x);
                    break;
                }
            }
        }
    }
    this.root = r;
    assert checkInvariants(root);
}

ForwardingNode

一个用于连接两个 table 的节点类。它包含一个 nextTable 指针,用于指向下一张表。而且这个节点的 key value next 指针全部为 null,它的 hash 值为-1. 这里面定义的 find 的方法是从 nextTable 里进行查询节点,而不是以自身为头节点进行查找。

/**
 * A node inserted at head of bins during transfer operations.
 */
static final class ForwardingNode<K,V> extends Node<K,V> {
    final Node<K,V>[] nextTable;
    ForwardingNode(Node<K,V>[] tab) {
        super(MOVED, null, null, null);
        this.nextTable = tab;
    }

    Node<K,V> find(int h, Object k) {
        // loop to avoid arbitrarily deep recursion on forwarding nodes
        outer: for (Node<K,V>[] tab = nextTable;;) {
            Node<K,V> e; int n;
            if (k == null || tab == null || (n = tab.length) == 0 ||
                (e = tabAt(tab, (n - 1) & h)) == null)
                return null;
            for (;;) {
                int eh; K ek;
                if ((eh = e.hash) == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
                if (eh < 0) {
                    if (e instanceof ForwardingNode) {
                        tab = ((ForwardingNode<K,V>)e).nextTable;
                        continue outer;
                    }
                    else
                        return e.find(h, k);
                }
                if ((e = e.next) == null)
                    return null;
            }
        }
    }
}

Unsafe 与 CAS

在 ConcurrentHashMap 中,随处可以看到 U, 大量使用了 U.compareAndSwapXXX 的方法,这个方法是利用一个 CAS 算法实现无锁化的修改值的操作,他可以大大降低锁代理的性能消耗。这个算法的基本思想就是不断地去比较当前内存中的变量值与你指定的一个变量值是否相等,如果相等,则接受你指定的修改的值,否则拒绝你的操作。因为当前线程中的值已经不是最新的值,你的修改很可能会覆盖掉其他线程修改的结果。

unsafe 静态块

unsafe 代码块控制了一些属性的修改工作,比如最常用的 SIZECTL。在这一版本的 concurrentHashMap 中,大量应用来的 CAS 方法进行变量、属性的修改工作。利用 CAS 进行无锁操作,可以大大提高性能。

private static final sun.misc.Unsafe U;
private static final long SIZECTL;
private static final long TRANSFERINDEX;
private static final long BASECOUNT;
private static final long CELLSBUSY;
private static final long CELLVALUE;
private static final long ABASE;
private static final int ASHIFT;

static {
    try {
        U = sun.misc.Unsafe.getUnsafe();
        Class<?> k = ConcurrentHashMap.class;
        SIZECTL = U.objectFieldOffset
            (k.getDeclaredField("sizeCtl"));
        TRANSFERINDEX = U.objectFieldOffset
            (k.getDeclaredField("transferIndex"));
        BASECOUNT = U.objectFieldOffset
            (k.getDeclaredField("baseCount"));
        CELLSBUSY = U.objectFieldOffset
            (k.getDeclaredField("cellsBusy"));
        Class<?> ck = CounterCell.class;
        CELLVALUE = U.objectFieldOffset
            (ck.getDeclaredField("value"));
        Class<?> ak = Node[].class;
        ABASE = U.arrayBaseOffset(ak);
        int scale = U.arrayIndexScale(ak);
        if ((scale & (scale - 1)) != 0)
            throw new Error("data type scale not a power of two");
        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
    } catch (Exception e) {
        throw new Error(e);
    }
}

三个核心方法

ConcurrentHashMap 定义了三个原子操作,用于对指定位置的节点进行操作。正是这些原子操作保证了 ConcurrentHashMap 的线程安全。

 @SuppressWarnings("unchecked")
    //获得在i位置上的Node节点
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }
		//利用CAS算法设置i位置上的Node节点。之所以能实现并发是因为他指定了原来这个节点的值是多少
		//在CAS算法中,会比较内存中的值与你指定的这个值是否相等,如果相等才接受你的修改,否则拒绝你的修改
		//因此当前线程中的值并不是最新的值,这种修改可能会覆盖掉其他线程的修改结果  有点类似于SVN
    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                        Node<K,V> c, Node<K,V> v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }
		//利用volatile方法设置节点位置的值
    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
    }
上一页