migrating-hadoop-yarn-to-kubernetes


weight: 101 title:迁移传统应用到Kubernetes步骤详解——以Hadoop YARN为例 date: “2022-05-21T00:00:00+08:00” type: book

本文档不是说明如何在kubernetes中开发和部署应用程序,如果您想要直接开发应用程序在kubernetes中运行可以参考 适用于kubernetes的应用开发部署流程

本文旨在说明如何将已有的应用程序尤其是传统的分布式应用程序迁移到kubernetes中。如果该类应用程序符合云原生应用规范(如12因素法则)的话,那么迁移会比较顺利,否则会遇到一些麻烦甚至是阻碍。具体请参考 迁移至云原生应用架构

下图是将单体应用迁移到云原生的步骤。

将单体应用迁移到云原生(图片来自 DevOpsDay Toronto)
将单体应用迁移到云原生(图片来自DevOpsDay Toronto)

接下来我们将以Spark on YARN with kubernetes为例来说明,该例子足够复杂也很有典型性,了解了这个例子可以帮助大家将自己的应用迁移到kubernetes集群上去。

下图即整个架构的示意图,所有的进程管理和容器扩容直接使用Makefile

spark on yarn with kubernetes
spark on yarn with kubernetes

注意: 该例子仅用来说明具体的步骤划分和复杂性,在生产环境应用还有待验证,请谨慎使用。

术语

对于为曾接触过kubernetes或对云平台的技术细节不太了解的人来说,如何将应用迁移到kubernetes中可能是个头疼的问题,在行动之前有必要先了解整个过程中需要用到哪些概念和术语,有助于大家在行动中达成共识。

过程中可能用到的概念和术语初步整理如下:

Terms
术语

为了讲解整改过程和具体细节,我们所有操作都是通过命令手动完成,不使用自动化工具。当您充分了解到其中的细节后可以通过自动化工具来优化该过程,以使其更加自动和高效,同时减少因为人为操作失误导致的迁移失败。

迁移应用

分解步骤解析
分解步骤解析

整个迁移过程分为如下几个步骤:

  1. 将原有应用拆解为服务

    我们不是一上来就开始做镜像,写配置,而是应该先梳理下要迁移的应用中有哪些可以作为服务运行,哪些是变的,哪些是不变的部分。

    服务划分的原则是最小可变原则,这个同样适用于镜像制作,将服务中不变的部分编译到同一个镜像中。

    对于像Spark on YARN这样复杂的应用,可以将其划分为三大类服务:

    • ResourceManager
    • NodeManager
    • Spark client
  2. 制作镜像

    根据拆解出来的服务,我们需要制作两个镜像:

    • Hadoop
    • Spark (From hadoop docker image)

    因为我们运行的是Spark on YARN,因此Spark依赖与Hadoop镜像,我们在Spark的基础上包装了一个web service作为服务启动。

    镜像制作过程中不需要在Dockerfile中指定EntrypointCMD,这些都是在kubernetesYAML文件中指定的。

    Hadoop YARNDockerfile参考如下配置。

    FROM my-docker-repo/jdk:7u80
    
    # Add native libs
    ARG HADOOP_VERSION=2.6.0-cdh5.5.2
    ## Prefer to download from server not use local storage
    ADD hadoop-${HADOOP_VERSION}.tar.gz /usr/local
    ADD ./lib/* /usr/local/hadoop-${HADOOP_VERSION}/lib/native/
    ADD ./jars/* /usr/local/hadoop-${HADOOP_VERSION}/share/hadoop/yarn/
    ENV HADOOP_PREFIX=/usr/local/hadoop \
        HADOOP_COMMON_HOME=/usr/local/hadoop \
        HADOOP_HDFS_HOME=/usr/local/hadoop \
        HADOOP_MAPRED_HOME=/usr/local/hadoop \
        HADOOP_YARN_HOME=/usr/local/hadoop \
        HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop \
        YARN_CONF_DIR=/usr/local/hadoop/etc/hadoop \
        PATH=${PATH}:/usr/local/hadoop/bin
    
    RUN \
      cd /usr/local && ln -s ./hadoop-${HADOOP_VERSION} hadoop && \
      rm -f ${HADOOP_PREFIX}/logs/*
    
    WORKDIR $HADOOP_PREFIX
    
    # Hdfs ports
    EXPOSE 50010 50020 50070 50075 50090 8020 9000
    # Mapred ports
    EXPOSE 19888
    #Yarn ports
    EXPOSE 8030 8031 8032 8033 8040 8042 8088
    #Other ports
    EXPOSE 49707 2122
    
  3. 准备应用的配置文件

    因为我们只制作了一个Hadoop的镜像,而需要启动两个服务,这就要求在服务启动的时候必须加载不同的配置文件,现在我们只需要准备两个服务中需要同时用的的配置的部分。

    YARN依赖的配置在 artifacts 目录下,包含以下文件:

    bootstrap.sh
    capacity-scheduler.xml
    container-executor.cfg
    core-site.xml
    hadoop-env.sh
    hdfs-site.xml
    log4j.properties
    mapred-site.xml
    nodemanager_exclude.txt
    slaves
    start-yarn-nm.sh
    start-yarn-rm.sh
    yarn-env.sh
    yarn-site.xml
    

    其中作为bootstrap启动脚本的 bootstrap.sh 也包含在该目录下,该脚本的如何编写请见下文。

  4. Kubernetes YAML文件

    根据业务的特性选择最适合的kubernetes的资源对象来运行,因为在YARNNodeManager需要使用主机名向ResourceManger注册,因此需要沿用YARN原有的服务发现方式,使用headless serviceStatefulSet资源。更多资料请参考 StatefulSet

    所有的Kubernetes YAML配置文件存储在 manifest 目录下,包括如下配置:

    • yarn-clusternamespace配置
    • Spark、ResourceManager、NodeManagerheadless serviceStatefulSet配置
    • 需要暴露到kubernetes集群外部的ingress配置(ResourceManagerWeb
    kube-yarn-ingress.yaml
    spark-statefulset.yaml
    yarn-cluster-namespace.yaml
    yarn-nm-statefulset.yaml
    yarn-rm-statefulset.yaml
    
  5. Bootstrap脚本

    Bootstrap脚本的作用是在启动时根据Pod的环境变量、主机名或其他可以区分不同Pod和将启动角色的变量来修改配置文件和启动服务应用。

    该脚本同时将原来YARN的日志使用stdout输出,便于使用 kubectl logs 查看日志或其他日志收集工具进行日志收集。

    启动脚本 bootstrap.shHadoop的配置文件同时保存在 artifacts 目录下。

    该脚本根据Pod的主机名,决定如何修改Hadoop的配置文件和启动何种服务。bootstrap.sh 文件的部分代码如下:

    if [[ "${HOSTNAME}" =~ "yarn-nm" ]]; then
      sed -i '/<\/configuration>/d' $HADOOP_PREFIX/etc/hadoop/yarn-site.xml
      cat >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml <<- EOM
      <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>${MY_MEM_LIMIT:-2048}</value>
      </property>
    
      <property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>${MY_CPU_LIMIT:-2}</value>
      </property>
    EOM
      echo '</configuration>' >> $HADOOP_PREFIX/etc/hadoop/yarn-site.xml
      cp ${CONFIG_DIR}/start-yarn-nm.sh $HADOOP_PREFIX/sbin/
      cd $HADOOP_PREFIX/sbin
      chmod +x start-yarn-nm.sh
      ./start-yarn-nm.sh
    fi
    
    if [[ $1 == "-d" ]]; then
      until find ${HADOOP_PREFIX}/logs -mmin -1 | egrep -q '.*'; echo "`date`: Waiting for logs..." ; do sleep 2 ; done
      tail -F ${HADOOP_PREFIX}/logs/* &
      while true; do sleep 1000; done
    fi
    

    从这部分中代码中可以看到,如果Pod的主机名中包含 yarn-nm 字段则向 yarn-site.xml 配置文件中增加如下内容:

      <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>${MY_MEM_LIMIT:-2048}</value>
      </property>
    
      <property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>${MY_CPU_LIMIT:-2}</value>
      </property>
    

    其中 MY_MEM_LIMITMY_CPU_LIMITkubernetes YAML中定义的环境变量,该环境变量又是引用的Resource limit

    所有的配置准备完成后,执行 start-yarn-nm.sh 脚本启动NodeManager

    如果kubernetes YAML中的container CMD args中包含 -d 则在后台运行NodeMangertail输出NodeManager的日志到标准输出。

  6. ConfigMaps

    Hadoop的配置文件和bootstrap脚本作为ConfigMap资源保存,用作Pod启动时挂载的volume

    kubectl create configmap hadoop-config \
    	  --from-file=artifacts/hadoop/bootstrap.sh \
    	  --from-file=artifacts/hadoop/start-yarn-rm.sh \
    	  --from-file=artifacts/hadoop/start-yarn-nm.sh \
    	  --from-file=artifacts/hadoop/slaves \
    	  --from-file=artifacts/hadoop/core-site.xml \
    	  --from-file=artifacts/hadoop/hdfs-site.xml \
    	  --from-file=artifacts/hadoop/mapred-site.xml \
    	  --from-file=artifacts/hadoop/yarn-site.xml \
    	  --from-file=artifacts/hadoop/capacity-scheduler.xml \
    	  --from-file=artifacts/hadoop/container-executor.cfg \
    	  --from-file=artifacts/hadoop/hadoop-env.sh \
    	  --from-file=artifacts/hadoop/log4j.properties \
    	  --from-file=artifacts/hadoop/nodemanager_exclude.txt \
    	  --from-file=artifacts/hadoop/yarn-env.sh
    kubectl  create configmap spark-config \
    	  --from-file=artifacts/spark/spark-bootstrap.sh \
    	  --from-file=artifacts/spark/spark-env.sh \
    	  --from-file=artifacts/spark/spark-defaults.conf
    

所有的配置完成后,可以可以使用kubectl命令来启动和管理集群了,我们编写了Makefile,您可以直接使用该Makefile封装的命令实现部分的自动化。

上一页
下一页