生命周期

生命周期(Lifetime)

在 Rust 绑定的生命周期中,我们会涉及以下对象:

  • Owner: 资源的所有者 a
  • Borrower: 资源的借用者 x
  • Scope: 作用域,资源被借用/引用的有效期

无论是资源的所有者还是资源的借用/引用,都存在在一个有效的存活时间或区间,这个时间区间称为生命周期,也可以直接以Scope 作用域去理解。下面是一个资源借用的例子:

fn main() {
	let a = 100_i32;

	{
		let x = &a;
	}  // x 作用域结束
	println!("{}", x);
}

编译时,我们会看到一个严重的错误提示:

error: unresolved name x.

错误的意思是“无法解析 x 标识符”,也就是找不到 x, 这是因为像很多编程语言一样,Rust 中也存在作用域概念,当资源离开离开作用域后,资源的内存就会被释放回收,当借用/引用离开作用域后也会被销毁,所以 x 在离开自己的作用域后,无法在作用域之外访问。上例子代码中的生命周期/作用域图示如下:

            {    a    {    x    }    *    }
所有者 a:         |________________________|
借用者 x:                   |____|            x = &a
  访问 x:                             |       失败:访问 x

可以看到,借用者 x 的生命周期是资源所有者 a 的生命周期的子集。但是 x 的生命周期在第一个 } 时结束并销毁,在接下来的 println! 中再次访问便会发生严重的错误。

fn main() {
	let a = 100_i32;

	{
		let x = &a;
		println!("{}", x);
	}  // x 作用域结束

}

这里我们仅仅把 println! 放到了中间的 {}, 这样就可以在 x的生命周期内正常的访问 x,此时的 Lifetime 图示如下:

            {    a    {    x    *    }    }
所有者 a:         |________________________|
借用者 x:                   |_________|       x = &a
  访问 x:                        |            OK:访问 x

生命周期推导

隐式 Lifetime

我们经常会遇到参数或者返回值为引用类型的函数:

fn foo(x: &str) -> &str {
	x
}

上面函数在实际应用中并没有太多用处,foo 函数仅仅接受一个 &str 类型的参数(x为对某个string类型资源Something的借用),并返回对资源Something的一个新的借用。

上面函数在实际应用中并没有太多用处,foo 函数仅仅接受一个 &str 类型的参数(x为对某个string类型资源Something的借用),并返回对资源Something的一个新的借用。实际上,上面函数包含该了隐性的生命周期命名,这是由编译器自动推导的,相当于:

fn foo<'a>(x: &'a str) -> &'a str {
	x
}

在这里,约束返回值的 Lifetime 必须大于或等于参数x的 Lifetime。下面函数写法也是合法的:

fn foo<'a>(x: &'a str) -> &'a str {
	"hello, world!"
}

为什么呢?这是因为字符串"hello, world!“的类型是&'static str,我们知道static类型的 Lifetime 是整个程序的运行周期,所以她比任意传入的参数的 Lifetime'a都要长,即 'static >= 'a 满足。

在上例中 Rust 可以自动推导 Lifetime,所以并不需要程序员显式指定 Lifetime 'a'a是什么呢?它是 Lifetime 的标识符,这里的a也可以用bcde、…,甚至可以用this_is_a_long_name等,当然实际编程中并不建议用这种冗长的标识符,这样会严重降低程序的可读性。foo后面的<'a>为 Lifetime 的声明,可以声明多个,如<'a, 'b>等等。

另外,除非编译器无法自动推导出 Lifetime,否则不建议显式指定 Lifetime 标识符,会降低程序的可读性。

显式 Lifetime

当输入参数为多个借用/引用时会发生什么呢?

fn foo(x: &str, y: &str) -> &str {
	if true {
		x
	} else {
		y
	}
}

这时候再编译,就没那么幸运了:

error: missing lifetime specifier [E0106]
fn foo(x: &str, y: &str) -> &str {
                            ^~~~

编译器告诉我们,需要我们显式指定 Lifetime 标识符,因为这个时候,编译器无法推导出返回值的 Lifetime 应该是比 x 长,还是比 y 长。虽然我们在函数中中用了 if true 确认一定可以返回x,但是要知道,编译器是在编译时候检查,而不是运行时,所以编译期间会同时检查所有的输入参数和返回值。

修复后的代码如下:

fn foo<'a>(x: &'a str, y: &'a str) -> &'a str {
	if true {
		x
	} else {
		y
	}
}

生命周期规则

要推导 Lifetime 是否合法,先明确两点:

  • 输出值(也称为返回值)依赖哪些输入值
  • 输入值的 Lifetime 大于或等于输出值的 Lifetime (准确来说:子集,而不是大于或等于)

Lifetime 推导公式::当输出值 R 依赖输入值 X Y Z …,当且仅当输出值的 Lifetime 为所有输入值的 Lifetime 交集的子集时,生命周期合法。

Lifetime(R) ⊆ ( Lifetime(X) ∩ Lifetime(Y) ∩ Lifetime(Z) ∩ Lifetime(...) )

对于例子 1:

fn foo<'a>(x: &'a str, y: &'a str) -> &'a str {
	if true {
		x
	} else {
		y
	}
}

因为返回值同时依赖输入参数xy,所以

Lifetime(返回值) ⊆ ( Lifetime(x) ∩ Lifetime(y) )

即:

'a ⊆ ('a ∩ 'a)  // 成立

多个 Lifetime 标识符

那我们继续看个更复杂的例子,定义多个 Lifetime 标识符:

fn foo<'a, 'b>(x: &'a str, y: &'b str) -> &'a str {
	if true {
		x
	} else {
		y
	}
}

先看下编译,又报错了:

<anon>:5:3: 5:4 error: cannot infer an appropriate lifetime for automatic coercion due to conflicting requirements [E0495]
<anon>:5 		y
         		^
<anon>:1:1: 7:2 help: consider using an explicit lifetime parameter as shown: fn foo<'a>(x: &'a str, y: &'a str) -> &'a str
<anon>:1 fn bar<'a, 'b>(x: &'a str, y: &'b str) -> &'a str {
<anon>:2 	if true {
<anon>:3 		x
<anon>:4 	} else {
<anon>:5 		y
<anon>:6 	}

编译器说自己无法正确地推导返回值的 Lifetime,读者可能会疑问,“我们不是已经指定返回值的 Lifetime 为'a了吗?"。 这儿我们同样可以通过生命周期推导公式推导:因为返回值同时依赖xy,所以

	Lifetime(返回值) ⊆ ( Lifetime(x) ∩ Lifetime(y) )

	即:

	'a ⊆ ('a ∩ 'b)  //不成立

很显然,上面我们根本没法保证成立。所以,这种情况下,我们可以显式地告诉编译器 'b'a 长('a'b 的子集),只需要在定义 Lifetime 的时候, 在 'b 的后面加上 : 'a, 意思是 'b'a 长,'a'b 的子集:

fn foo<'a, 'b: 'a>(x: &'a str, y: &'b str) -> &'a str {
	if true {
		x
	} else {
		y
	}
}

这里我们根据公式继续推导:

条件:Lifetime(x) ⊆ Lifetime(y)
推导:Lifetime(返回值) ⊆ ( Lifetime(x) ∩ Lifetime(y) )

即:

条件:'a ⊆ 'b
推导:'a ⊆ ('a ∩ 'b) // 成立

上面是成立的,所以可以编译通过。

结构体中的生命周期

上面我们更多讨论了函数中 Lifetime 的应用,在struct中 Lifetime 同样重要。

我们来定义一个Person结构体:

struct Person {
	age: &u8,
}

编译时我们会得到一个 error:

<anon>:2:8: 2:12 error: missing lifetime specifier [E0106]
<anon>:2 	age: &str,

之所以会报错,这是因为 Rust 要确保 Person 的 Lifetime 不会比它的 age 借用长,不然会出现 Dangling Pointer 的严重内存问题。所以我们需要为 age 借用声明 Lifetime:

struct Person<'a> {
	age: &'a u8,
}

不需要对 Person 后面的 <'a> 感到疑惑,这里的 'a 并不是指 Person 这个struct 的 Lifetime,仅仅是一个泛型参数而已,struct 可以有多个 Lifetime 参数用来约束不同的 field,实际的 Lifetime 应该是所有 field Lifetime 交集的子集。例如:

fn main() {
	let x = 20_u8;
	let stormgbs = Person {
						age: &x,
					 };
}

这里,生命周期/Scope 的示意图如下:

                  {   x    stormgbs      *     }
所有者 x:              |________________________|
所有者 stormgbs:                |_______________|  'a
借用者 stormgbs.age:            |_______________|  stormgbs.age = &x

既然<'a>作为Person的泛型参数,所以在为Person实现方法时也需要加上<'a>,不然:

impl Person {
	fn print_age(&self) {
		println!("Person.age = {}", self.age);
	}
}

报错:

<anon>:5:6: 5:12 error: wrong number of lifetime parameters: expected 1, found 0 [E0107]
<anon>:5 impl Person {
              ^~~~~~

正确的做法是

impl<'a> Person<'a> {
	fn print_age(&self) {
		println!("Person.age = {}", self.age);
	}
}

这样加上<'a>后就可以了。读者可能会疑问,为什么print_age中不需要加上'a?这是个好问题。因为print_age的输出参数为(),也就是可以不依赖任何输入参数, 所以编译器此时可以不必关心和推导 Lifetime。即使是fn print_age(&self, other_age: &i32) {...}也可以编译通过。

如果Person的方法存在输出值(借用)呢?

impl<'a> Person<'a> {
	fn get_age(&self) -> &u8 {
		self.age
	}
}

get_age 方法的输出值依赖一个输入值 &self,这种情况下,Rust 编译器可以自动推导为:

impl<'a> Person<'a> {
	fn get_age(&'a self) -> &'a u8 {
		self.age
	}
}

如果输出值(借用)依赖了多个输入值呢?

impl<'a, 'b> Person<'a> {
	fn get_max_age(&'a self, p: &'a Person) -> &'a u8 {
		if self.age > p.age {
			self.age
		} else {
			p.age
		}
	}
}

类似之前的 Lifetime 推导章节,当返回值(借用)依赖多个输入值时,需显示声明 Lifetime。和函数 Lifetime 同理。

其他

无论在函数还是在struct中,甚至在enum中,Lifetime 理论知识都是一样的。希望大家可以慢慢体会和吸收,做到举一反三。

下一页