Trait

Trait

为了描述类型可以实现的抽象接口 (abstract interface),Rust 引入了特性 (trait) 来定义函数类型签名 (function type signature):

trait HasArea {
    fn area(&self) -> f64;
}

struct Circle {
    x: f64,
    y: f64,
    radius: f64,
}

impl HasArea for Circle {
    fn area(&self) -> f64 {
        std::f64::consts::PI * (self.radius * self.radius)
    }
}

struct Square {
    x: f64,
    y: f64,
    side: f64,
}

impl HasArea for Square {
    fn area(&self) -> f64 {
        self.side * self.side
    }
}

fn print_area<T: HasArea>(shape: T) {
    println!("This shape has an area of {}", shape.area());
}

其中函数 print_area() 中的泛型参数 T 被添加了一个名为 HasArea 的特性约束 (trait constraint),用以确保任何实现了 HasArea 的类型将拥有一个 .area() 方法。

Trait 继承

trait Foo {
    fn foo(&self);
}

trait FooBar : Foo {
    fn foobar(&self);
}

这样 FooBar 的实现者也要同时实现 Foo

struct Baz;

impl Foo for Baz {
    fn foo(&self) { println!("foo"); }
}

impl FooBar for Baz {
    fn foobar(&self) { println!("foobar"); }
}

derive 属性

Rust 提供了一个属性derive来自动实现一些 trait,这样可以避免重复繁琐地实现他们,能被derive使用的 trait 包括:Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd

#[derive(Debug)]
struct Foo;

fn main() {
    println!("{:?}", Foo);
}

多 Trait 约束

如果需要多个特性限定 (multiple trait bounds),可以使用+

use std::fmt::Debug;

fn foo<T: Clone, K: Clone + Debug>(x: T, y: K) {
    x.clone();
    y.clone();
    println!("{:?}", y);
}

fn bar<T, K>(x: T, y: K)
    where T: Clone,
          K: Clone + Debug
{
    x.clone();
    y.clone();
    println!("{:?}", y);
}

关于实现特性的几条限制:

  • 如果一个特性不在当前作用域内,它就不能被实现。
  • 不管是特性还是impl,都只能在当前的包装箱内起作用。
  • 带有特性约束的泛型函数使用单态化实现 (monomorphization),所以它是静态派分的 (statically dispatched)。

下面列举几个非常有用的标准库特性:

  • Drop提供了当一个值退出作用域后执行代码的功能,它只有一个drop(&mut self)方法。
  • Borrow用于创建一个数据结构时把拥有和借用的值看作等同。
  • AsRef用于在泛型中把一个值转换为引用。
  • Deref用于把&U类型的值自动转换为&T类型。
  • Iterator用于在集合 (collection) 和惰性值生成器 (lazy value generator) 上实现迭代器。
  • Sized用于标记运行时长度固定的类型,而不定长的切片和特性必须放在指针后面使其运行时长度已知,比如&[T]Box

默认方法

定义在特性中的方法称为默认方法 (default method),可以被该特性的实现覆盖。此外,特性之间也可以存在继承 (inheritance):

trait Foo {
    fn foo(&self);

    // default method
    fn bar(&self) { println!("We called bar."); }
}

// inheritance
trait FooBar : Foo {
    fn foobar(&self);
}

struct Baz;

impl Foo for Baz {
    fn foo(&self) { println!("foo"); }
}

impl FooBar for Baz {
    fn foobar(&self) { println!("foobar"); }
}

如果两个不同特性的方法具有相同的名称,可以使用通用函数调用语法 (universal function call syntax):

// short-hand form
Trait::method(args);

// expanded form
<Type as Trait>::method(args);

泛型

特性也可以接受泛型参数。但是,往往更好的处理方式是使用关联类型 (associated type):

// use generic parameters
trait Graph<N, E> {
    fn has_edge(&self, &N, &N) -> bool;
    fn edges(&self, &N) -> Vec<E>;
}

fn distance<N, E, G: Graph<N, E>>(graph: &G, start: &N, end: &N) -> u32 {

}

// use associated types
trait Graph {
    type N;
    type E;

    fn has_edge(&self, &Self::N, &Self::N) -> bool;
    fn edges(&self, &Self::N) -> Vec<Self::E>;
}

fn distance<G: Graph>(graph: &G, start: &G::N, end: &G::N) -> uint {

}

struct Node;

struct Edge;

struct SimpleGraph;

impl Graph for SimpleGraph {
    type N = Node;
    type E = Edge;

    fn has_edge(&self, n1: &Node, n2: &Node) -> bool {

    }

    fn edges(&self, n: &Node) -> Vec<Edge> {

    }
}

let graph = SimpleGraph;
let object = Box::new(graph) as Box<Graph<N=Node, E=Edge>>;
下一页