不同阶段的孪生

不同阶段的孪生

数字孪生技术贯穿了产品生命周期中的不同阶段,它同 PLM(Product Lifecycle Management)的理念是不谋而合的。可以说,数字孪生技术的发展将 PLM 的能力和理念,从设计阶段真正扩展到了全生命周期。

数字孪生以产品为主线,并在生命周期的不同阶段引入不同的要素,形成了不同阶段的表现形态。

设计阶段的数字孪生

在产品的设计阶段,利用数字孪生可以提高设计的准确性,并验证产品在真实环境中的性能。这个阶段的数字孪生,主要包括如下功能:

  • 数字模型设计:使用 CAD 工具开发出满足技术规格的产品虚拟原型,精确的记录产品的各种物理参数,以可视化的方式展示出来,并通过一系列的验证手段来检验设计的精准程度;

  • 模拟和仿真:通过一系列可重复、可变参数、可加速的仿真实验,来验证产品在不同外部环境下的性能和表现,在设计阶段就验证产品的适应性。

例如,在汽车设计过程中,由于对节能减排的要求,达索帮助包括宝马、特斯拉、丰田在内的汽车公司利用其 CAD 和 CAE 平台 3D Experience,准确进行空气动力学、流体声学等方面的分析和仿真,在外形设计通过数据分析和仿真,大幅度地提升流线性,减少了空气阻力。

制造阶段的数字孪生

在产品的制造阶段,利用数字孪生可以加快产品导入的时间,提高产品设计的质量、降低产品的生产成本和提高产品的交付速度。

产品阶段的数字孪生是一个高度协同的过程,通过数字化手段构建起来的虚拟生产线,将产品本身的数字孪生同生产设备、生产过程等其他形态的数字孪生高度集成起来,实现如下的功能:

  • 生产过程仿真:在产品生产之前,就可以通过虚拟生产的方式来模拟在不同产品、不同参数、不同外部条件下的生产过程,实现对产能、效率以及可能出现的生产瓶颈等问题的提前预判,加速新产品导入的过程;

  • 数字化产线:将生产阶段的各种要素,如原材料、设备、工艺配方和工序要求,通过数字化的手段集成在一个紧密协作的生产过程中,并根据既定的规则,自动的完成在不同条件组合下的操作,实现自动化的生产过程;同时记录生产过程中的各类数据,为后续的分析和优化提供依据。

  • 关键指标监控和过程能力评估:通过采集生产线上的各种生产设备的实时运行数据,实现全部生产过程的可视化监控,并且通过经验或者机器学习建立关键设备参数、检验指标的监控策略,对出现违背策略的异常情况进行及时处理和调整,实现稳定并不断优化的生产过程。

服务阶段的数字孪生

随着物联网技术的成熟和传感器成本的下降,很多工业产品,从大型装备到消费级产品,都使用了大量的传感器来采集产品运行阶段的环境和工作状态,并通过数据分析和优化来避免产品的故障,改善用户对产品的使用体验。

这个阶段的数字孪生,可以实现如下的功能:

  • 远程监控和预测性维修:通过读取智能工业产品的传感器或者控制系统的各种实时参数,构建可视化的远程监控,并给予采集的历史数据,构建层次化的部件、子系统乃至整个设备的健康指标体系,并使用人工智能实现趋势预测;基于预测的结果,对维修策略以及备品备件的管理策略进行优化,降低和避免客户因为非计划停机带来的损失;

  • 优化客户的生产指标:对于很多需要依赖工业装备来实现生产的工业客户,工业装备参数设置的合理性以及在不同生产条件下的适应性,往往决定了客户产品的质量和交付周期。而工业装备厂商可以通过海量采集的数据,构建起针对不同应用场景、不同生产过程的经验模型,帮助其客户优化参数配置,以改善客户的产品质量和生产效率。

  • 产品使用反馈:通过采集智能工业产品的实时运行数据,工业产品制造商可以洞悉客户对产品的真实需求,不仅能够帮助客户加速对新产品的导入周期、避免产品错误使用导致的故障、提高产品参数配置的准确性,更能够精确的把握客户的需求,避免研发决策失误。