序列类型

Indexed Collection

array

array就是数组,它的定义方式如下:

var arr [n]type

[n]type 中,n 表示数组的长度,type 表示存储元素的类型。对数组的操作和其它语言类似,都是通过 [] 来进行读取或赋值:

var arr [10]int// 声明了一个int类型的数组
arr[0] = 42// 数组下标是从0开始的
arr[1] = 13// 赋值操作
fmt.Printf("The first element is %d\n", arr[0])// 获取数据,返回42
fmt.Printf("The last element is %d\n", arr[9]) //返回未赋值的最后一个元素,默认返回0

由于长度也是数组类型的一部分,因此[3]int[4]int是不同的类型,数组也就不能改变长度。数组之间的赋值是值的赋值,即当把一个数组作为参数传入函数的时候,传入的其实是该数组的副本,而不是它的指针。如果要使用指针,那么就需要用到后面介绍的slice类型了。

数组可以使用另一种:=来声明

a := [3]int{1, 2, 3} // 声明了一个长度为3的int数组

b := [10]int{1, 2, 3} // 声明了一个长度为10的int数组,其中前三个元素初始化为1、2、3,其它默认为0

c := [...]int{4, 5, 6} // 可以省略长度而采用`...`的方式,Go会自动根据元素个数来计算长度

也许你会说,我想数组里面的值还是数组,能实现吗?当然咯,Go 支持嵌套数组,即多维数组。比如下面的代码就声明了一个二维数组:

// 声明了一个二维数组,该数组以两个数组作为元素,其中每个数组中又有4个int类型的元素
doubleArray := [2][4]int{[4]int{1, 2, 3, 4}, [4]int{5, 6, 7, 8}}

// 上面的声明可以简化,直接忽略内部的类型
easyArray := [2][4]int{{1, 2, 3, 4}, {5, 6, 7, 8}}

数组的分配如下所示:

slice | 动态数组

在很多应用场景中,数组并不能满足我们的需求。在初始定义数组时,我们并不知道需要多大的数组,因此我们就需要“动态数组”。在 Go 里面这种数据结构叫slice

slice并不是真正意义上的动态数组,而是一个引用类型。slice总是指向一个底层arrayslice的声明也可以像array一样,只是不需要长度。

// 和声明array一样,只是少了长度
var fslice []int

接下来我们可以声明一个slice,并初始化数据,如下所示:

slice := []byte {'a', 'b', 'c', 'd'}

slice可以从一个数组或一个已经存在的slice中再次声明。slice通过array[i:j]来获取,其中i是数组的开始位置,j是结束位置,但不包含array[j],它的长度是j-i

// 声明一个含有10个元素元素类型为byte的数组
var ar = [10]byte {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'}


// 声明两个含有byte的slice
var a, b []byte


// a指向数组的第3个元素开始,并到第五个元素结束,
a = ar[2:5]
//现在a含有的元素: ar[2]、ar[3]和ar[4]


// b是数组ar的另一个slice
b = ar[3:5]
// b的元素是:ar[3]和ar[4]

注意slice和数组在声明时的区别:声明数组时,方括号内写明了数组的长度或使用...自动计算长度,而声明slice时,方括号内没有任何字符。

它们的数据结构如下所示

图 2.3 slice 和 array 的对应关系图

slice 有一些简便的操作

  • slice的默认开始位置是 0,ar[:n]等价于ar[0:n]
  • slice的第二个序列默认是数组的长度,ar[n:]等价于ar[n:len(ar)]
  • 如果从一个数组里面直接获取slice,可以这样ar[:],因为默认第一个序列是 0,第二个是数组的长度,即等价于ar[0:len(ar)]

下面这个例子展示了更多关于slice的操作:

// 声明一个数组
var array = [10]byte{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'}
// 声明两个slice
var aSlice, bSlice []byte


// 演示一些简便操作
aSlice = array[:3] // 等价于aSlice = array[0:3] aSlice包含元素: a,b,c
aSlice = array[5:] // 等价于aSlice = array[5:10] aSlice包含元素: f,g,h,i,j
aSlice = array[:]// 等价于aSlice = array[0:10] 这样aSlice包含了全部的元素


// 从slice中获取slice
aSlice = array[3:7]// aSlice包含元素: d,e,f,g,len=4,cap=7
bSlice = aSlice[1:3] // bSlice 包含aSlice[1], aSlice[2] 也就是含有: e,f
bSlice = aSlice[:3]// bSlice 包含 aSlice[0], aSlice[1], aSlice[2] 也就是含有: d,e,f
bSlice = aSlice[0:5] // 对slice的slice可以在cap范围内扩展,此时bSlice包含:d,e,f,g,h
bSlice = aSlice[:] // bSlice包含所有aSlice的元素: d,e,f,g

slice是引用类型,所以当引用改变其中元素的值时,其它的所有引用都会改变该值,例如上面的aSlicebSlice,如果修改了aSlice中元素的值,那么bSlice相对应的值也会改变。

从概念上面来说slice像一个结构体,这个结构体包含了三个元素:

  • 一个指针,指向数组中slice指定的开始位置
  • 长度,即slice的长度
  • 最大长度,也就是slice开始位置到数组的最后位置的长度
  Array_a := [10]byte{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'}
  Slice_a := Array_a[2:5]

上面代码的真正存储结构如下图所示

图 2.4 slice 对应数组的信息

对于slice有几个有用的内置函数:

  • len 获取slice的长度
  • cap 获取slice的最大容量
  • appendslice里面追加一个或者多个元素,然后返回一个和slice一样类型的slice
  • copy 函数copy从源slicesrc中复制元素到目标dst,并且返回复制的元素的个数

注:append函数会改变slice所引用的数组的内容,从而影响到引用同一数组的其它slice。但当slice中没有剩余空间(即(cap-len) == 0)时,此时将动态分配新的数组空间。返回的slice数组指针将指向这个空间,而原数组的内容将保持不变;其它引用此数组的slice则不受影响。

从 Go1.2 开始 slice 支持了三个参数的 slice,之前我们一直采用这种方式在 slice 或者 array 基础上来获取一个 slice

var array [10]int
slice := array[2:4]

这个例子里面 slice 的容量是 8,新版本里面可以指定这个容量

slice = array[2:4:7]

上面这个的容量就是7-2,即 5。这样这个产生的新的 slice 就没办法访问最后的三个元素。

如果 slice 是这样的形式array[:i:j],即第一个参数为空,默认值就是 0。

上一页