7.8 通过继承进行设计

7.8 通过继承进行设计

学习了多态性的知识后,由于多态性是如此“聪明”的一种工具,所以看起来似乎所有东西都应该继承。但假如过度使用继承技术,也会使自己的设计变得不必要地复杂起来。事实上,当我们以一个现成类为基础建立一个新类时,如首先选择继承,会使情况变得异常复杂。

一个更好的思路是首先选择“合成”——如果不能十分确定自己应使用哪一个。合成不会强迫我们的程序设计进入继承的分级结构中。同时,合成显得更加灵活,因为可以动态选择一种类型(以及行为),而继承要求在编译期间准确地知道一种类型。下面这个例子对此进行了阐释:

//: Transmogrify.java
// Dynamically changing the behavior of
// an object via composition.

interface Actor {
  void act();
}

class HappyActor implements Actor {
  public void act() {
    System.out.println("HappyActor");
  }
}

class SadActor implements Actor {
  public void act() {
    System.out.println("SadActor");
  }
}

class Stage {
  Actor a = new HappyActor();
  void change() { a = new SadActor(); }
  void go() { a.act(); }
}

public class Transmogrify {
  public static void main(String[] args) {
    Stage s = new Stage();
    s.go(); // Prints "HappyActor"
    s.change();
    s.go(); // Prints "SadActor"
  }
} ///:~

在这里,一个 Stage 对象包含了指向一个 Actor 的指针,后者被初始化成一个 HappyActor 对象。这意味着 go()会产生特定的行为。但由于指针在运行期间可以重新与一个不同的对象绑定或结合起来,所以 SadActor 对象的指针可在 a 中得到替换,然后由 go()产生的行为发生改变。这样一来,我们在运行期间就获得了很大的灵活性。与此相反,我们不能在运行期间换用不同的形式来进行继承;它要求在编译期间完全决定下来。

一条常规的设计准则是:用继承表达行为间的差异,并用成员变量表达状态的变化。在上述例子中,两者都得到了应用:继承了两个不同的类,用于表达 act()方法的差异;而 Stage 通过合成技术允许它自己的状态发生变化。在这种情况下,那种状态的改变同时也产生了行为的变化。

7.8.1 纯继承与扩展

学习继承时,为了创建继承分级结构,看来最明显的方法是采取一种“纯粹”的手段。也就是说,只有在基础类或“接口”中已建立的方法才可在衍生类中被覆盖,如下面这张图所示:

可将其描述成一种纯粹的“属于”关系,因为一个类的接口已规定了它到底“是什么”或者“属于什么”。通过继承,可保证所有衍生类都只拥有基础类的接口。如果按上述示意图操作,衍生出来的类除了基础类的接口之外,也不会再拥有其他什么。

可将其想象成一种“纯替换”,因为衍生类对象可为基础类完美地替换掉。使用它们的时候,我们根本没必要知道与子类有关的任何额外信息。如下所示:

也就是说,基础类可接收我们发给衍生类的任何消息,因为两者拥有完全一致的接口。我们要做的全部事情就是从衍生上溯造型,而且永远不需要回过头来检查对象的准确类型是什么。所有细节都已通过多态性获得了完美的控制。 若按这种思路考虑问题,那么一个纯粹的“属于”关系似乎是唯一明智的设计方法,其他任何设计方法都会导致混乱不清的思路,而且在定义上存在很大的困难。但这种想法又属于另一个极端。经过细致的研究,我们发现扩展接口对于一些特定问题来说是特别有效的方案。可将其称为“类似于”关系,因为扩展后的衍生类“类似于”基础类——它们有相同的基础接口——但它增加了一些特性,要求用额外的方法加以实现。如下所示:

尽管这是一种有用和明智的做法(由具体的环境决定),但它也有一个缺点:衍生类中对接口扩展的那一部分不可在基础类中使用。所以一旦上溯造型,就不可再调用新方法:

若在此时不进行上溯造型,则不会出现此类问题。但在许多情况下,都需要重新核实对象的准确类型,使自己能访问那个类型的扩展方法。在后面的小节里,我们具体讲述了这是如何实现的。

7.8.2 下溯造型与运行期类型标识

由于我们在上溯造型(在继承结构中向上移动)期间丢失了具体的类型信息,所以为了获取具体的类型信息——亦即在分级结构中向下移动——我们必须使用 “下溯造型”技术。然而,我们知道一个上溯造型肯定是安全的;基础类不可能再拥有一个比衍生类更大的接口。因此,我们通过基础类接口发送的每一条消息都肯定能够接收到。但在进行下溯造型的时候,我们(举个例子来说)并不真的知道一个几何形状实际是一个圆,它完全可能是一个三角形、方形或者其他形状。

为解决这个问题,必须有一种办法能够保证下溯造型正确进行。只有这样,我们才不会冒然造型成一种错误的类型,然后发出一条对象不可能收到的消息。这样做是非常不安全的。

在某些语言中(如 C++),为了进行保证“类型安全”的下溯造型,必须采取特殊的操作。但在 Java 中,所有造型都会自动得到检查和核实!所以即使我们只是进行一次普通的括弧造型,进入运行期以后,仍然会毫无留情地对这个造型进行检查,保证它的确是我们希望的那种类型。如果不是,就会得到一个 ClassCastException(类造型异常)。在运行期间对类型进行检查的行为叫作“运行期类型标识”(RTTI)。下面这个例子向大家演示了 RTTI 的行为:

//: RTTI.java
// Downcasting & Run-Time Type
// Identification (RTTI)
import java.util.*;

class Useful {
  public void f() {}
  public void g() {}
}

class MoreUseful extends Useful {
  public void f() {}
  public void g() {}
  public void u() {}
  public void v() {}
  public void w() {}
}

public class RTTI {
  public static void main(String[] args) {
    Useful[] x = {
      new Useful(),
      new MoreUseful()
    };
    x[0].f();
    x[1].g();
    // Compile-time: method not found in Useful:
    //! x[1].u();
    ((MoreUseful)x[1]).u(); // Downcast/RTTI
    ((MoreUseful)x[0]).u(); // Exception thrown
  }
} ///:~

和在示意图中一样,MoreUseful(更有用的)对 Useful(有用的)的接口进行了扩展。但由于它是继承来的,所以也能上溯造型到一个 Useful。我们可看到这会在对数组 x(位于 main()中)进行初始化的时候发生。由于数组中的两个对象都属于 Useful 类,所以可将 f()和 g()方法同时发给它们两个。而且假如试图调用 u()(它只存在于 MoreUseful),就会收到一条编译期出错提示。

若想访问一个 MoreUseful 对象的扩展接口,可试着进行下溯造型。如果它是正确的类型,这一行动就会成功。否则,就会得到一个 ClassCastException。我们不必为这个异常编写任何特殊的代码,因为它指出的是一个可能在程序中任何地方发生的一个编程错误。

RTTI 的意义远不仅仅反映在造型处理上。例如,在试图下溯造型之前,可通过一种方法了解自己处理的是什么类型。整个第 11 章都在讲述 Java 运行期类型标识的方方面面。

上一页
下一页